a2 United States Patent

Archer et al.

US009251078B2

US 9,251,078 B2
Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

ACQUIRING REMOTE SHARED VARIABLE
DIRECTORY INFORMATION IN A
PARALLEL COMPUTER

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors: Charles J. Archer, Rochester, MN (US);

James E. Carey, Rochester, MN (US);

Philip J. Sanders, Rochester, MN (US);

Brian E. Smith, Knoxville, TN (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 232 days.

Appl. No.: 13/766,165

Filed: Feb. 13, 2013
Prior Publication Data
US 2014/0173201 Al Jun. 19, 2014

Related U.S. Application Data

Continuation of application No. 13/718,327, filed on
Dec. 18, 2012.

Int. Cl1.

GO6F 9/50 (2006.01)

GO6F 12/08 (2006.01)

GO6F 9/54 (2006.01)

GO6F 9/46 (2006.01)

U.S. CL

CPC GO6F 12/084 (2013.01); GO6F 9/5016
(2013.01); GO6F 9/544 (2013.01); GOGF 12/08

(2013.01)
Field of Classification Search
None
See application file for complete search history.

» Memory 1045
Shared Memory Partition 1050

Privats Memory Partiion 1051
First SVD 1070

First Task 1040
First Thread 1030
i} Other Thrds. 1098

Shared Mem.
Part. 1060 |
it

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0149903 Al 7/2005 Archambault et al.
2005/0198441 Al 9/2005 Tokoro
2007/0074213 ALl* 3/2007 Ma ..ccccovevvrnrenne GOG6F 9/3851
718/100
2008/0002578 Al 1/2008 Coffman et al.
2009/0006810 Al 1/2009 Almasi et al.
2009/0153897 Al 6/2009 Blackmore et al.
2009/0240869 Al 9/2009 O’Krafka et al.
2009/0327444 Al 12/2009 Archer et al.
2010/0100655 Al 4/2010 Dowedeit
(Continued)
OTHER PUBLICATIONS

Final Office Action, U.S. Appl. No. 13/718,276, Apr. 24, 2014, pp.
1-17.

(Continued)

Primary Examiner — Eric C Wai
(74) Attorney, Agent, or Firm — Edward J. Lenart; Grant A.
Johnson; Kennedy Lenart Spraggins LLLP

(57) ABSTRACT

Methods, parallel computers, and computer program prod-
ucts for acquiring remote shared variable directory (SVD)
information in a parallel computer are provided. Embodi-
ments include a runtime optimizer determining that a first
thread of a first task requires shared resource data stored in a
memory partition corresponding to a second thread of a sec-
ond task. Embodiments also include the runtime optimizer
requesting from the second thread, in response to determining
that the first thread of the first task requires the shared
resource data, SVD information associated with the shared
resource data. Embodiments also include the runtime opti-
mizer receiving from the second thread, the SVD information
associated with the shared resource data.

6 Claims, 13 Drawing Sheets

»Memory 1046

Resource Dala 1080,

Priv. Mem. Part. 1061
Second SVD 1071

SVD Information 1081

Second Task 1041
Sec. Thread 1031
f| Other Thrds. 1093

Runtime Optirizer 1000

Determine, By A Runtime Optimizer Of A Parallel Computer, That A First Thread Of A First Task
Requires Resource Data Stored in A Memory Partition Corresponding To A Second Thread Of A
Second Task 1002

1

Request From The Second Thread, In Response To Determining That The First Thread Of The
First Task Requires The Resource Data Stored In The Memary Partiion Corresponding To The
Second Thread, Shared Variable Directory (SVD) Information Associated With The Resource
Data 1094

i

Receive From The Second Thread, By The Runtime Optimizer, The SVD Information 1006

US 9,251,078 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0219208 Al
2011/0289177 Al
2014/0173204 Al
2014/0173205 Al
2014/0173212 Al
2014/0173257 Al
2014/0173604 Al
2014/0173615 Al
2014/0173626 Al

9/2011 Asaad et al.
11/2011 Archer et al.
6/2014 Archer et al.
6/2014 Archer et al.
6/2014 Archer et al.
6/2014 Archer et al.
6/2014 Archer et al.
6/2014 Archer et al.
6/2014 Archer et al.
2014/0173627 Al 6/2014 Archer et al.
2014/0173629 Al 6/2014 Archer et al.

OTHER PUBLICATIONS

Final Office Action, U.S. Appl. No. 13/766,251, Apr. 24, 2014, pp.
1-18.

Barton, C. et al., “Shared Memory Programming for Large Scale
Machines”, PLDI’06, Jun. 11-14, 2006, Ottawa, Ontario, Canada, pp.
1-10, ACM.

Farreras et al., “Scalable RDMA Performance in PGAS Languages”,
e-Print, Universitat Politecnica De Catalunya, Mar. 25, 2010, upc.edu
(online) [accessed Jun. 13, 2012], 12 pp., URL: http://upcommons.
upc.edw/e-prints/bitstream/2117/6804/1/Scalable.pdf.

Barton et al., “An Unified Parallel C Compiler That Implements
Automatic Communication Coalescing”, In 14th Workshop on Com-
pilers for Parallel Computing (CPC’09), Jan. 2009, upc.edu (online)
[accessed Jun. 13, 2012], URL: http://capinfo.e.ac.upc.edu/PDFs/
dir28/1ile003653 .pdf.

Barton et al., “A Characterization of Shared Data Access Patterns in
UPC Programs”, The 19th International Workshop on Languages and
Compilers for Parallel Computing (LCPC), Nov. 2006, (online)
[accessed Jun. 13, 2012], 16 pp., URL: http://research.ihost.com/
Icpc06/final/55/55_ Paper.pdf.

Dohashi, “Atomic Operations”, mapleprimes.com (online), Nov.
2009, 2 pages, URL:mapleprimes.com/maplesoftblog/36246-
Atomic-Operations.

Luo et al., “Multi-threaded UPC Runtime with Network Endpoints:
Design Alternatives and Evaluation on Multi-core Architectures”,
18th International Conference on High Performance Computing
(HiPC), Dec. 2011, 10 pages, IEEE Xplore (online), DOIL: 10.1109/
HiPC.2011.6152734.

Eicken et al. “Active Messages: a Mechanism for Integrated Com-
munication and Computation”, Proceedings of the 19th International
Symposium on Computer Architecture, May 1992, 20 pages, Gold
Coast, Australia, ACM Press.

Willcock et al. “AM++: A Generalized Active Message Framework”,
Proceedings of the 19th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT’10), Sep. 2010, 10
pages, ACM New York, NY, DOI: 10.1145/1854273.1854323.
Valois, “Lock-Free Linked Lists Using Compare-and-Swap”, Pro-
ceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing (PODC’95), pp. 214-222, Aug. 1995, ACM
New York, NY, DOI: 10.1145/224964.224988.

Marty, “Cache Coherence Techniques for Multicore Processors”,
Thesis, Jan. 2008, 27 pages, University of Wisconsin—Madison.

* cited by examiner

U.S. Patent Feb. 2, 2016 Sheet 1 of 13 US 9,251,078 B2

Parallel Active Messaging

Interface (PAMI') 218 Compute Njoges 102 l

Compiler 195
Memory 198 ompiler 195

Runtime
Optimizer 199

Shar. Mem. Partitions 197

Priv. Mem. Partifions 198 @

Point To Point
108

Service
Application ’

* 124 l
1/O Node I/O Node Service Node Parallel
110 114 116 Computer
‘$ 100
Service
— Application
LAN 130 Interface
126
N ¢ User
Printer | Terminal | 128
Data Storage 120 122k o

18

FIG. 1

U.S. Patent Feb. 2, 2016 Sheet 2 of 13 US 9,251,078 B2
Compute Node 152
RAM 156
Prooesiqs 164 Application Program 158
T A Runtime Optimizer 216
uﬁ_ nmn ﬁ_ _‘L__S— NN 1___5_
e PAMI 218
ALU 166 ALU 166
Memory Segment 227
Shared Memory Partitions 297
Front Side Private Memory Partitions 296
Bus 161
— Memory Operating System 162
Bus
Bus Adapter 154
194] DMA Controller 225
Extension Bus 168 t
IR 169
Y
Point To Point ALU 170
Adapter +
180 .
Ethemnet JTAG Collective
Adapter Slave AA AA Operations Adapter
172 176 188
y v
+X ~Y
- +
Gigabit JTAG 182 185 Children Parent
Ethernet Master . ¥ “_! 190 192
174 178
1z vk 18 186 \ J
N N
~ (()Zollec;.tlve
Point To Point perations
Network Network
106 FIG. 2

108

U.S. Patent Feb. 2, 2016 Sheet 3 of 13 US 9,251,078 B2

=Y Compute Node 152
184
X Point To Point — +X
- Adapter > 181
182 [
T \\
7 \ by
183
\4
-Z
186 FIG. 3A

U.S. Patent

Feb. 2, 2016 Sheet 4 of 13

Parent
192

Compute Node 152

Collective
Operations Adapter
188

A A

FIG. 3B

Children
190

US 9,251,078 B2

U.S. Patent Feb. 2, 2016 Sheet 5 of 13 US 9,251,078 B2

Dots Rpresent

Compute Nodes
-Y 102
184
\J
~Z
186

A Parallel Operations Network, Organized FIG. 4
As A “Torus’ Or 'Mesh’ .
108

U.S. Patent Feb. 2, 2016 Sheet 6 of 13 US 9,251,078 B2

Physical Root
iy
e

Links
103

Nodes
204

G
,
- \,
4 s,
4 .

’ S
. Ny
g ’
2N Y
KR LY
; , y

5 ‘) Q Branch

; 5 ; \ H . % 4 H : * ! ' H
’ [} 1] ’ [} [I3 1 * » .
/ \ H \ h ‘] \ ; \ ¢ \] '\) Leaf
5 \ . K :) ¢ . . I 3 ed
L
Nodes

o 60 o [,

A Collective Operations Network Dots Represent

Organized As A Binary Tree Compute Nodes
108 102

FIG. 5

U.S. Patent Feb. 2, 2016 Sheet 7 of 13 US 9,251,078 B2

o Application o
-
Application 158 Layer 208 Application 158
Application Messaging Module VAMQ@Q_, Application Messaging Module
215 essaging Layer 215
210 210
System
Parallel Active Messaging Messagin Parallel Active Messaging
Interface (‘PAMI) 218 Layer 212 Interface (‘PAMI") 218
Data Communications Hardware Data Communications
>
Resources 220 Layer 214 Resources 220
Origin Compute Node Target Compute Node
222 224

FIG. 6

U.S. Patent Feb. 2, 2016 Sheet 8 of 13 US 9,251,078 B2

Data Communications Resources 220

Application 158

Gigabit Ethernet Fibre Channel
Adapter 238 Adapter 242 Tree Network 100
Infiniband Adapter PCl Express Adapter
240 248 Shared Memory 227
DMA Controller 225 DMA Controller 226
DMA Engine Network DMA Engine
" s 108 29 |
Injection | | Receive Injection | | Receive
FIFO 230} |FIFO 232 FIFO 230| {FIFO 232
2 ||| 26 | | 24 ||| 28 |
[2 ||| 28 | | 284 ||| 28 |
¥ Origin Endoint 352 Target Endoint 354 v
RAM 153 Context 512 Context 513 RAM 156
Post{...) 480 Post(...) 481
Transfer Advance(...) 482 Advanoe(...) 483 Transfer
Data Data
194 Work Queue 282 Work Queue 284 494
PUT(...) 390

Application 159

FIG. 7

U.S. Patent

US 9,251,078 B2

Feb. 2, 2016 Sheet 9 of 13
DMA Controfler 225
DMA Engine 228
>
Transmit 502
Network
> I Receive 504 } 108
Injection Receive
FIFO 230 FIFO 232
L2 ||| 26 |
L2 || (2% |
! Origin Endoint 352 Target Endoint 354 l
RAM 155 rigin Endoint 352 arge oint 354 RAM 156
Context 512 Context 513
Transfer Post(...) 480 Post(...) 481 Transfer
Data Advance(...) 482 Advance(...) 483 Data
494 494
Work Queue 282 Work Queue 284
PUT(...) 390
Application 158 Application 159
Compute Node 152

FIG. 8

U.S. Patent

Feb. 2, 2016 Sheet 10 of 13 US 9,251,078 B2
Application 158
4 ¢ ¢ \ ‘
IBM MPI MPICH UPC chn;:i\nfe ARMCI
802 504 506 510
508
4 [B | -
Y Y Y Y Y
Context
512
Functions:
grei?:§§k")) 4771 Context Context Context Context
Lock(...) 476 o4 26 ol8 %20
Unlock(...) 41
Post{...) 480
Advance(...) 482
Resources Resources Resources Resources Resources
522 524 526 528 530
PAMI Client PAMI Client PAMI Client PAMI Client PAMI Client
532 534 536 538 540
Initialization
Functions] PAMI Configuration 318
316
Parallel Active Messaging Interface (PAMF) 218

FIG. 9

U.S. Patent Feb. 2, 2016 Sheet 11 of 13 US 9,251,078 B2

y Memory 1045 Shared Mem. y- Memory 1046
Shared Memory Partition 1050 Part. 1060 | /Resource Data 1080/

Private Memory Partition 1051

Priv. Mem. Part. 1061 Y

First SVD 1070 Second SVD 1071
SVD Information 1081
/ 1000 // 1091 /
First Task 1040 Second Task 1041

| First Thread 1030

m Other Thrds. 1098

| | Sec. Thread 1031 |
1098 | H] Other Thrds. 1099 |

Runtime Optimizer 1000

Determine, By A Runtime Optimizer Of A Parallel Computer, That A First Thread Of A First Task
Requires Resource Data Stored In A Memory Partition Corresponding To A Second Thread Of A
Second Task 1002

!

Request From The Second Thread, In Response To Determining That The First Thread Of The
First Task Requires The Resource Data Stored In The Memory Partition Corresponding To The
Second Thread, Shared Variable Directory (SVD) Information Associated With The Resource
Data 1004

!

Receive From The Second Thread, By The Runtime Optimizer, The SVD Information 1006

FIG. 10

U.S. Patent Feb. 2, 2016 Sheet 12 of 13 US 9,251,078 B2

Runtime Optimizer 1000

Determine, By A Runtime Optimizer Of A Parallel Computer, That A First Thread Of A First Task
Requires Shared Resource Data Stored In A Memory Partition Corresponding To A Second
Thread Of A Second Task 1002

v

Regquest From The Second Thread, In Response To Determining That The First Thread Of The
First Task Requires The Shared Resource Data Stored In The Memory Partition Corresponding
To The Second Thread, Shared Variable Directory (SVD) Information Associated With The
Shared Resource Data 1004

Receive From The Second Thread, By The Runtime Optimizer, The SVD Information 1006

v

Cache, By The Runtime Optimizer, The SVD Information In An SVD Associated With The First
Thread 1102

v

Use The Cached SVD Information In The SVD To Access The Shared Resource Data In The
Memory Partition Corresponding To The Second Thread 1104

First SVD 1070 Second SVD 1071

/ SVD Information 1081

/' Cached SVD 1153

FIG. 11

U.S. Patent Feb. 2, 2016 Sheet 13 of 13 US 9,251,078 B2

Runtime Optimizer 1000

Determine That A First Thread Of A First Task Requires Shared Resource Data Stored In A
Memory Partition Corresponding To A Second Thread Of A Second Task 1002

Track Which Threads Of A Particular Job Are Using The Key 1202

l

Request From The Second Thread, Shared Variable Directory (SVD) Information Associated With
The Shared Resource Data 1004

Transmit An Active Message Using A Paralle! Active Message Interface (PAMI) 1204

/ Active Message 1250 /

!

Receive From The Second Thread, By The Runtime Optimizer, The SVD Information 1008

Determine That The SVD Information Has Not Been Updated By The Second Thread 1206

FIG. 12

US 9,251,078 B2

1
ACQUIRING REMOTE SHARED VARIABLE
DIRECTORY INFORMATION IN A
PARALLEL COMPUTER

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation application of and claims
priority from U.S. patent application Ser. No. 13/718,327,
filed on Dec. 18, 2012.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, parallel computers, and computer pro-
gram products for acquiring remote shared variable directory
(SVD) information in a parallel computer.

2. Description of Related Art

The development of the EDVAC computer system of 1948
is often cited as the beginning of the computer era. Since that
time, computer systems have evolved into extremely compli-
cated devices. Today’s computers are much more sophisti-
cated than early systems such as the EDVAC. Computer sys-
tems typically include a combination of hardware and
software components, application programs, operating sys-
tems, processors, buses, memory, input/output devices, and
so on. As advances in semiconductor processing and com-
puter architecture push the performance of the computer
higher and higher, more sophisticated computer software has
evolved to take advantage of the higher performance of the
hardware, resulting in computer systems today that are much
more powerful than just a few years ago.

Parallel computing is an area of computer technology that
has experienced advances. Parallel computing is the simulta-
neous execution of the same application (split up and spe-
cially adapted) on multiple processors in order to obtain
results faster. Parallel computing is based on the fact that the
process of solving a problem usually can be divided into
smaller jobs, which may be carried out simultaneously with
some coordination.

Parallel computers execute parallel algorithms. A parallel
algorithm can be split up to be executed a piece at a time on
many different processing devices, and then put back together
again at the end to get a data processing result. Some algo-
rithms are easy to divide up into pieces. Splitting up the job of
checking all of the numbers from one to a hundred thousand
to see which are primes could be done, for example, by
assigning a subset of the numbers to each available processor,
and then putting the list of positive results back together. In
this specification, the multiple processing devices that
execute the individual pieces of a parallel program are
referred to as ‘compute nodes.” A parallel computer is com-
posed of compute nodes and other processing nodes as well,
including, for example, input/output (‘I/O’) nodes, and ser-
vice nodes.

Parallel algorithms are valuable because it is faster to per-
form some kinds of large computing jobs via a parallel algo-
rithm than it is via a serial (non-parallel) algorithm, because
of'the way modern processors work. It is far more difficult to
construct a computer with a single fast processor than one
with many slow processors with the same throughput. There
are also certain theoretical limits to the potential speed of
serial processors. On the other hand, every parallel algorithm
has a serial part and so parallel algorithms have a saturation

10

15

20

40

45

55

2

point. After that point adding more processors does not yield
any more throughput but only increases the overhead and
cost.

Parallel algorithms are designed also to optimize one more
resource, the data communications requirements among the
nodes of a parallel computer. There are two ways parallel
processors communicate, shared memory or message pass-
ing. Shared memory processing needs additional locking for
the data and imposes the overhead of additional processor and
bus cycles and also serializes some portion of the algorithm.

Message passing processing uses high-speed data commu-
nications networks and message buffers, but this communi-
cation adds transfer overhead on the data communications
networks as well as additional memory need for message
buffers and latency in the data communications among nodes.
Designs of parallel computers use specially designed data
communications links so that the communication overhead
will be small but it is the parallel algorithm that decides the
volume of the traffic.

Many data communications network architectures are used
for message passing among nodes in parallel computers.
Compute nodes may be organized in a network as a ‘torus’ or
‘mesh,” for example. Also, compute nodes may be organized
in a network as a tree. A torus network connects the nodes in
a three-dimensional mesh with wrap around links. Every
node is connected to its six neighbors through this torus
network, and each node is addressed by its x,y,z coordinate in
the mesh. In a tree network, the nodes typically are connected
into a binary tree: each node has a parent and two children
(although some nodes may only have zero children or one
child, depending on the hardware configuration). In comput-
ers that use a torus and a tree network, the two networks
typically are implemented independently of one another, with
separate routing circuits, separate physical links, and separate
message buffers.

A torus network lends itself to point to point operations, but
a tree network typically is inefficient in point to point com-
munication. A tree network, however, does provide high
bandwidth and low latency for certain collective operations,
message passing operations where all compute nodes partici-
pate simultaneously, such as, for example, an allgather.

There is at this time a general trend in computer processor
development to move from multi-core to many-core proces-
sors: from dual-, tri-, quad-, hexa-, octo-core chips to ones
with tens or even hundreds of cores. In addition, multi-core
chips mixed with simultaneous multithreading, memory-on-
chip, and special-purpose heterogeneous cores promise fur-
ther performance and efficiency gains, especially in process-
ing multimedia, recognition and networking applications.
This trend is impacting the supercomputing world as well,
where large transistor count chips are more efficiently used by
replicating cores, rather than building chips that are very fast
but very inefficient in terms of power utilization.

At the same time, the network link speed and number of
links into and out of a compute node are dramatically increas-
ing. IBM’s BlueGene/Q™ supercomputer, for example, has a
five-dimensional torus network, which implements ten bidi-
rectional data communications links per compute node—and
BlueGene/Q supports many thousands of compute nodes. To
keep these links filled with data, DMA engines are employed,
but increasingly, the HPC community is interested in latency.
In traditional supercomputers with pared-down operating
systems, there is little or no multi-tasking within compute
nodes. When a data communications link is unavailable, a
task typically blocks or ‘spins’ on a data transmission, in
effect, idling a processor until a data transmission resource

US 9,251,078 B2

3

becomes available. In the trend for more powerful individual
processors, such blocking or spinning has a bad effect on
latency.

SUMMARY OF THE INVENTION

Methods, parallel computers, and computer program prod-
ucts for acquiring remote shared variable directory (SVD)
information in a parallel computer are provided. Embodi-
ments include a runtime optimizer determining that a first
thread of a first task requires shared resource data stored in a
memory partition corresponding to a second thread of a sec-
ond task. Embodiments also include the runtime optimizer
requesting from the second thread, in response to determining
that the first thread of the first task requires the shared
resource data, SVD information associated with the shared
resource data. Embodiments also include the runtime opti-
mizer receiving from the second thread, the SVD information
associated with the shared resource data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a block and network diagram of an
example parallel computer that implements acquiring remote
SVD information according to embodiments of the present
invention.

FIG. 2 sets forth a block diagram of an example compute
node for use in parallel computers that implement acquiring
remote SVD information according to embodiments of the
present invention.

FIG. 3A illustrates an example Point To Point Adapter for
use in parallel computers that implement acquiring remote
SVD information according to embodiments of the present
invention.

FIG. 3B illustrates an example Collective Operations
Adapter for use in parallel computers that implement acquir-
ing remote SVD information according to embodiments of
the present invention.

FIG. 4 illustrates an example data communications net-
work optimized for point to point operations for use in par-
allel computers that implement acquiring remote SVD infor-
mation according to embodiments of the present invention.

FIG. 5 illustrates an example data communications net-
work optimized for collective operations by organizing com-
pute nodes in a tree for use in parallel computers that imple-
ment acquiring remote SVD information according to
embodiments of the present invention.

FIG. 6 sets forth a block diagram of an example protocol
stack for use in parallel computers that implement acquiring
remote SVD information according to embodiments of the
present invention.

FIG. 7 sets forth a functional block diagram of example
data communications resources for use in parallel computers
that implement acquiring remote SVD information according
to embodiments of the present invention.

FIG. 8 sets forth a functional block diagram of an example
DMA controller—in an architecture where the DM A control-
ler is the only DMA controller on a compute node—and an
origin endpoint and its target endpoint are both located on the
same compute node.

FIG. 9 sets forth a functional block diagram of an example
PAMI for use in parallel computers that implement acquiring
remote SVD information according to embodiments of the
present invention.

FIG. 10 sets forth a flow chart illustrating an example
method of acquiring remote SVD information in a parallel
computer according to embodiments of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 11 sets forth a flow chartillustrating a further example
method of acquiring remote SVD information in a parallel
computer according to embodiments of the present invention.

FIG. 12 sets forth a flow chart illustrating a further example
method of acquiring remote SVD information in a parallel
computer according to embodiments of the present invention.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Example methods, computers, and computer program
products for acquiring remote shared variable directory
(SVD) information in a parallel computer according to
embodiments of the present invention are described with
reference to the accompanying drawings, beginning with
FIG. 1. FIG. 1 sets forth a block and network diagram of an
example parallel computer (100) that implements acquiring
remote SVD information according to embodiments of the
present invention. The parallel computer (100) in the example
of FIG. 1 is coupled to non-volatile memory for the computer
in the form of data storage device (118), an output device for
the computer in the form of printer (120), and an input/output
device for the computer in the form of computer terminal
(122). The parallel computer (100) in the example of FIG. 1
includes a plurality of compute nodes (102).

The parallel computer (100) in the example of FIG. 1
includes a plurality of compute nodes (102). The compute
nodes (102) are coupled for data communications by several
independent data communications networks including a high
speed Ethernet network (174), a Joint Test Action Group
(‘JTAG’) network (104), a tree network (106) which is opti-
mized for collective operations, and a torus network (108)
which is optimized point to point operations. Tree network
(106) is a data communications network that includes data
communications links connected to the compute nodes so as
to organize the compute nodes as a tree. Each data commu-
nications network is implemented with data communications
links among the compute nodes (102). The data communica-
tions links provide data communications for parallel opera-
tions among the compute nodes of the parallel computer.

In addition, the compute nodes (102) of parallel computer
are organized into at least one operational group (132) of
compute nodes for collective parallel operations on parallel
computer (100). An operational group of compute nodes is
the set of compute nodes upon which a collective parallel
operation executes. Collective operations are implemented
with data communications among the compute nodes of an
operational group. Collective operations are those functions
that involve all the compute nodes of an operational group. A
collective operation is an operation, a message-passing com-
puter program instruction that is executed simultaneously,
that is, at approximately the same time, by all the compute
nodes in an operational group of compute nodes. Such an
operational group may include all the compute nodes in a
parallel computer (100) or a subset all the compute nodes.
Collective operations are often built around point to point
operations. A collective operation requires that all processes
on all compute nodes within an operational group call the
same collective operation with matching arguments. A
‘broadcast’ is an example of a collective operations for mov-
ing data among compute nodes of an operational group. A
‘reduce’ operation is an example of a collective operation that
executes arithmetic or logical functions on data distributed
among the compute nodes of an operational group. An opera-
tional group may be implemented as, for example, an MPI
‘communicator,” or a partitioned global address space
(PGAS) ‘communicator.’

US 9,251,078 B2

5

In the example of FIG. 1, each compute node includes
memory and a compiler. For illustrative purposes, an example
memory (198) and an example compiler (195) are shown.
According to embodiments of the present invention, the
memory (198) is configured according to a PGAS program-
ming model. The compiler (195) of FIG. 1 includes a PGAS
runtime optimizer (199) to aid in the execution of PGAS
programming code of the compiler.

In PGAS programming models like Unified Parallel C
(UPC), the programming model is different than traditional
distributed programming models. In a PGAS model, a thread
may have both private memory as well as shared memory
across the address space. That is, the memory is partitioned to
provide thread local memory to a thread as well as shared
memory across the threads.

In PGAS style languages and programming models, the
address space is global across the threads of a job. Even
though the address spaces used to construct a particular job
may span multiple OSI’s and are protected by hardware, UPC
allows access to these address spaces implicitly through lan-
guage constructs such as the keyword ‘shared.” This keyword
allows the user to construct a variable in a line of code that
allows access across a number of threads, for example the
following UPC code may be used to perform vector addition:

#include <upc__relaxed.h>

#define N 100*THREADS

shared int v1[N], v2[N], viplusv2[N];
void main() {

int i;

for(i=MYTHREAD; i<N; i+=THREADS)
viplusv2[i]=v1[i]+v2[i];

In this example, variable are parallelized across one hun-
dred threads. As explained above, no explicit calls are used to
implement parallelism. Instead, the keyword ‘shared’ is used
to indicate the variable is parallelized across threads. That is,
no knowledge of the layout of the threads to the hardware is
required for generating UPC code.

With PGAS programming models, the user writes code in
a similar fashion to serial code (like C) and hints to a compiler
when certain variables or code segments can be parallelized,
including the creation of shared objects. For example, in the
Unified Parallel C (UPC) PGAS programming model, shared
objects (i.e., data structures accessible from all UPC threads)
form the basis of the UPC language. Examples of shared
objects include but are not limited to: shared scalers (includ-
ing structures/unions/enumerations), shared arrays (includ-
ing multi-blocked array), shared pointers (with either shared
or private targets), and shared locks.

Central to the PGAS programming models is the concept
of'shared object affinity. A shared object is affine to a particu-
lar thread if it is local to that thread’s memory. For example,
in UPC, shared arrays may be distributed among a plurality of
threads so different pieces of the array may have affinity to
different threads. A compiler may utilize a runtime optimizer
to help map and control resources of the threads.

A PGAS runtime optimizer is generally a module of com-
puter program instructions configured to identify, create, and
allocate resources for a particular job. For example, a PGAS
runtime optimizer may be configured to spawn and collect
UPC threads, implement access to shared data, perform
pointer arithmetic on pointers to shared objects and imple-
ment all the UPC intrinsic function calls (such as
upc_phaseof, upc_barrier and upc_memget). A PGAS runt-
ime optimizer may also be generally configured to map the

15

20

25

30

35

40

45

6

resources in an optimal way to available hardware and begin
execution of core code on the resources.

To help organize and control access to these shared
resources, a PGAS runtime optimizer may implement a
Shared Variable Directory (SVD) that is used to store loca-
tions of variables that are shared across the tasks. A PGAS
runtime optimizer may use an SVD to look up and find
resources within a UPC job. This may include looking up
memory, thread, and other resource locations.

An SVD may be a table contained on each task of a node
and is used to look up remote resources of other tasks. In a
particular embodiment, an SVD may include a partition for
each thread where each partition of the SVD holds a list of
those variable affine to a particular thread. The SVD may also
include another partition that is reserved for shared variables
allocated statically or through collective operations. Shared
objects may be referred to by an SVD handle, which is an
opaque object that is internally indexed in the SVD. An SVD
handle may contain the partition number in the directory, and
the index of the object in the partition.

Multiple replicas of an SVD may exist in a system and the
SVD often changes at runtime because of UPC routines for
dynamic data allocation. Because in the PGAS programming
models, each thread may allocate and de-allocate shared vari-
ables independently of each other, changes to copies of the
SVD may require threads to communicate updates to each
other by acquiring remote SVD information from other tasks.

In the example of FIG. 1, the runtime optimizer (199) may
include computer program instructions for acquiring remote
SVD information according to embodiments of the present
invention. Specifically, the runtime optimizer (199) may
include computer program instructions that when executed
by a computer processor cause the computer processor to
function by partitioning memory (198) such that each thread
is provided a partition of shared memory (197) and a partition
of private memory (196). As explained above, the runtime
optimizer (199) may also be configured to map resources
across the partitions and to create an SVD to index these
mappings. The runtime optimizer (199) may also be config-
ured to determine that a first thread of a first task requires
shared resource data stored in a shared memory partition
corresponding to a second thread of a second task. The runt-
ime optimizer (199) may also be configured to request from
the second thread, in response to determining that the first
thread of the first task requires the shared resource data, the
shared resource data and SVD information associated with
the shared resource data. The runtime optimizer (199) may
include computer program instructions that when executed
by a computer processor cause the computer processor to
function by receiving from the second thread, the shared
resource data and the SVD information.

To transfer information and data between the tasks, the
PGAS runtime optimizer (199) may access a lower level
message passing layer, such as a Parallel Active Message
Interface (PAMI) (218) that implements primitives across the
tasks in the job, including collective operations.

Most collective operations are variations or combinations
of four basic operations: broadcast, gather, scatter, and
reduce. In a broadcast operation, all processes specify the
same root process, whose buffer contents will be sent. Pro-
cesses other than the root specify receive buffers. After the
operation, all buffers contain the message from the root pro-
cess.

A scatter operation, like the broadcast operation, is also a
one-to-many collective operation. All processes specity the
same receive count. The send arguments are only significant
to the root process, whose buffer actually contains sendcount

US 9,251,078 B2

7

* N elements of a given datatype, where N is the number of
processes in the given group of compute nodes. The send
buffer will be divided equally and dispersed to all processes
(including itself). Each compute node is assigned a sequential
identifier termed a ‘rank.” After the operation, the root has sent
sendcount data elements to each process in increasing rank
order. Rank 0 receives the first sendcount data elements from
the send buffer. Rank 1 receives the second sendcount data
elements from the send buffer, and so on.

A gather operation is a many-to-one collective operation
that is a complete reverse of the description of the scatter
operation. That is, a gather is a many-to-one collective opera-
tion in which elements of a datatype are gathered from the
ranked compute nodes into a receive butfer in a root node.

A reduce operation is also a many-to-one collective opera-
tion that includes an arithmetic or logical function performed
on two data elements. All processes specify the same ‘count’
and the same arithmetic or logical function. After the reduc-
tion, all processes have sent count data elements from com-
puter node send buffers to the root process. In a reduction
operation, data elements from corresponding send buffer
locations are combined pair-wise by arithmetic or logical
operations to yield a single corresponding element in the root
process’s receive buffer. Application specific reduction
operations can be defined at runtime. Parallel communica-
tions libraries may support predefined operations.

In addition to compute nodes, the example parallel com-
puter (100) includes input/output (‘I/O’) nodes (110, 114)
coupled to compute nodes (102) through one of the data
communications networks (174). The I/O nodes (110, 114)
provide 1/O services between compute nodes (102) and I/O
devices (118, 120, 122). I/O nodes (110, 114) are connected
for data communications to /O devices (118, 120, 122)
through local area network (‘LLAN”) (130). Computer (100)
also includes a service node (116) coupled to the compute
nodes through one of the networks (104). Service node (116)
provides service common to pluralities of compute nodes,
loading programs into the compute nodes, starting program
execution on the compute nodes, retrieving results of program
operations on the computer nodes, and so on. Service node
(116) runs a service application (124) and communicates with
users (128) through a service application interface (126) that
runs on computer terminal (122).

As the term is used here, a parallel active messaging inter-
face or ‘PAMI’ (218) is a system-level messaging layer in a
protocol stack of a parallel computer that is composed of data
communications endpoints each of which is specified with
data communications parameters for a thread of execution on
a compute node of the parallel computer. The PAMI is a
‘parallel’ interface in that many instances of the PAMI operate
in parallel on the compute nodes of a parallel computer. The
PAMI is an ‘active messaging interface’ in that data commu-
nications messages in the PAMI are active messages, ‘active’
in the sense that such messages implement callback functions
to advise of message dispatch and instruction completion and
so0 on, thereby reducing the quantity of acknowledgment traf-
fic, and the like, burdening the data communication resources
of the PAMI.

Each data communications endpoint of a PAMI is imple-
mented as a combination of a client, a context, and a task. A
‘client’ as the term is used in PAMI operations is a collection
of data communications resources dedicated to the exclusive
use of an application-level data processing entity, an applica-
tion or an application messaging module such as an MPI
library. A ‘context’ as the term is used in PAMI operations is
composed of a subset of a client’s collection of data process-
ing resources, context functions, and a work queue of data

10

15

20

25

30

35

40

45

50

55

60

65

8

transfer instructions to be performed by use of the subset
through the context functions operated by an assigned thread
of execution. In at least some embodiments, the context’s
subset of a client’s data processing resources is dedicated to
the exclusive use of the context. A ‘task’ as the term is used in
PAMI operations refers to a canonical entity, an integer or
objection oriented programming object, that represents in a
PAMI a process of execution of the parallel application. That
is, a task is typically implemented as an identifier of a par-
ticular instance of an application executing on a compute
node, a compute core on a compute node, or a thread of
execution on a multi-threading compute core on a compute
node.

In the example of FIG. 1, the compute nodes (102), as well
as PAMI endpoints on the compute nodes, are coupled for
data communications through the PAMI (218) and through
data communications resources such as collective network
(106) and point-to-point network (108). In any particular
communication of data, an origin endpoint and a target end-
point can be any two endpoints on any of the compute nodes
(102), on different compute nodes, or two endpoints on the
same compute node. Collective operations can have one ori-
gin endpoint and many target endpoints, as in a BROAD-
CAST, for example, or many origin endpoints and one target
endpoint, as in a GATHER, for example. A sequence of data
communications instructions, including instructions for col-
lective operations, resides in a work queue of a context and
results in data transfers among endpoints, origin endpoints
and target endpoints. Data communications instructions,
including instructions for collective operations, are ‘active’ in
the sense that the instructions implement callback functions
to advise of and implement instruction dispatch and instruc-
tion completion, thereby reducing the quantity of acknowl-
edgment traffic required on the network. Each such data com-
munications instruction or instruction for a collective
operation effects a data transfer or transfers, from one or more
origin endpoints to one or more target endpoints, through
some form of data communications resources, networks,
shared memory segments, network adapters, DMA control-
lers, and the like.

The arrangement of compute nodes, networks, and 1/O
devices making up the example parallel computer illustrated
in FIG. 1 are for explanation only, not for limitation of the
present invention. Parallel computers capable of data com-
munications in a PAMI according to embodiments of the
present invention may include additional nodes, networks,
devices, and architectures, not shown in FIG. 1, as will occur
to those of skill in the art. The parallel computer (100) in the
example of FIG. 1 includes sixteen compute nodes (102);
some parallel computers that implement acquiring remote
shared variable directory (SVD) information according to
some embodiments of the present invention include thou-
sands of compute nodes. In addition to Ethernet and JTAG,
networks in such data processing systems may support many
data communications protocols including for example TCP
(Transmission Control Protocol), IP (Internet Protocol), and
others as will occur to those of skill in the art. Various embodi-
ments of the present invention may be implemented on a
variety of hardware platforms in addition to those illustrated
in FIG. 1.

Acquiring remote shared variable directory (SVD) infor-
mation according to embodiments of the present invention is
generally implemented on a parallel computer that includes a
plurality of compute nodes. In fact, such computers may
include thousands of such compute nodes, with a compute
node typically executing at least one instance of a parallel
application. Each compute node is in turn itself a computer

US 9,251,078 B2

9

composed of one or more computer processors, its own com-
puter memory, and its own input/output (‘I/O’) adapters. For
further explanation, therefore, FIG. 2 sets forth a block dia-
gram of an example compute node (152) for use in a parallel
computer that implement acquiring remote shared variable
directory (SVD) information according to embodiments of
the present invention. The compute node (152) of FIG. 2
includes one or more computer processors (164) as well as
random access memory (‘RAM’) (156). Each processor
(164) can support multiple hardware compute cores (165),
and each such core can in turn support multiple threads of
execution, hardware threads of execution as well as software
threads. Each processor (164) is connected to RAM (156)
through a high-speed front side bus (161), bus adapter (194),
and a high-speed memory bus (154)—and through bus
adapter (194) and an extension bus (168) to other components
of the compute node. Stored in RAM (156) is an application
program (158), a module of computer program instructions
that carries out parallel, user-level data processing using par-
allel algorithms.

Also stored RAM (156) is an runtime optimizer (216), a
library of computer program instructions that carry out appli-
cation-level parallel communications among compute nodes,
including point to point operations as well as collective opera-
tions. Although the application program can call PAMI rou-
tines directly, the application program (158) often executes
point-to-point data communications operations by calling
software routines in the application messaging module (215),
which in turn is improved according to embodiments of the
present invention to use PAMI functions to implement such
communications. An application messaging module can be
developed from scratch to use a PAMI according to embodi-
ments of the present invention, using a traditional program-
ming language such as the C programming language or C++,
for example, and using traditional programming methods to
write parallel communications routines that send and receive
data among PAMI endpoints and compute nodes through data
communications networks or shared-memory transfers.

Also represented in RAM in the example of FIG. 2 is a
PAMI (218). Readers will recognize, however, that the rep-
resentation of the PAMI in RAM is a convention for ease of
explanation rather than a limitation of the present invention,
because the PAMI and its components, endpoints, clients,
contexts, and so on, have particular associations with and
inclusions of hardware data communications resources. In
fact, the PAMI can be implemented partly as software or
firmware and hardware—or even, at least in some embodi-
ments, entirely in hardware.

Also represented in RAM (156) in the example of FIG. 2 is
a segment (227) of memory. According to embodiments of
the present invention, the runtime optimizer (216) may be
configured to partition the memory (227) such that each
thread is provided a partition of shared memory (297) and a
partition of private memory (296). As explained above, the
runtime optimizer (216) may also be configured to map
resources across the partitions and to create an SVD to index
these mappings. The runtime optimizer (216) may also be
configured to determine that a first thread of a first task
requires shared resource data stored in a shared memory
partition corresponding to a second thread of a second task.
The runtime optimizer (216) may also be configured to
request from the second thread, in response to determining
that the first thread of the first task requires the shared
resource data, the shared resource data and SVD information
associated with the shared resource data. The runtime opti-
mizer (216) may include computer program instructions that
when executed by a computer processor cause the computer

20

40

45

55

10

processor to function by receiving from the second thread, the
shared resource data and the SVD information.

In the example of FIG. 2, each processor or compute core
has uniform access to the RAM (156) on the compute node, so
that accessing a segment of shared memory is equally fast
regardless where the shared segment is located in physical
memory. In some embodiments, however, modules of physi-
cal memory are dedicated to particular processors, so that a
processor may access local memory quickly and remote
memory more slowly, a configuration referred to as a Non-
Uniform Memory Access or ‘NUMA.” In such embodiments,
asegment of shared memory can be configured locally for one
endpoint and remotely for another endpoint—or remotely
from both endpoints of a communication. From the perspec-
tive of an origin endpoint transmitting data through a segment
of shared memory that is configured remotely with respect to
the origin endpoint, transmitting data through the segment of
shared memory will appear slower that if the segment of
shared memory were configured locally with respect to the
origin endpoint—or if the segment were local to both the
origin endpoint and the target endpoint. This is the effect of
the architecture represented by the compute node (152) in the
example of FIG. 2 with all processors and all compute cores
coupled through the same bus to the RAM—that all accesses
to segments of memory shared among processes or proces-
sors on the compute node are local—and therefore very fast.

Also stored in RAM (156) in the example compute node of
FIG. 2 is an operating system (162), a module of computer
program instructions and routines for an application pro-
gram’s access to other resources of the compute node. It is
possible, in some embodiments at least, for an application
program, an application messaging module, and a PAMI in a
compute node of a parallel computer to run threads of execu-
tion with no user login and no security issues because each
such thread is entitled to complete access to all resources of
the node. The quantity and complexity of duties to be per-
formed by an operating system on a compute node in a par-
allel computer therefore can be somewhat smaller and less
complex than those of an operating system on a serial com-
puter with many threads running simultaneously with various
level of authorization for access to resources. In addition,
there is no video 1/O on the compute node (152) of FIG. 2,
another factor that decreases the demands on the operating
system. The operating system may therefore be quite light-
weight by comparison with operating systems of general
purpose computers, a pared down or ‘lightweight” version as
it were, or an operating system developed specifically for
operations on a particular parallel computer. Operating sys-
tems that may be improved or simplified for use in a compute
node according to embodiments of the present invention
include UNIX™, Linux™, Microsoft XP™, AIX™, [BM’s
15/0S™ and others as will occur to those of skill in the art.

The example compute node (152) of FIG. 2 includes sev-
eral communications adapters (172,176, 180, 188) for imple-
menting data communications with other nodes of a parallel
computer. Such data communications may be carried out
serially through RS-232 connections, through external buses
such as USB, through data communications networks such as
IP networks, and in other ways as will occur to those of skill
in the art. Communications adapters implement the hardware
level of data communications through which one computer
sends data communications to another computer, directly or
through a network. Examples of communications adapters
for use in computers that implement acquiring remote shared
variable directory (SVD) information according to embodi-
ments of the present invention include modems for wired

US 9,251,078 B2

11

communications, Ethernet (IEEE 802.3) adapters for wired
network communications, and 802.11b adapters for wireless
network communications.

The data communications adapters in the example of FIG.
2 include a Gigabit Ethernet adapter (172) that couples
example compute node (152) for data communications to a
Gigabit Ethernet (174). Gigabit Ethernet is a network trans-
mission standard, defined in the IEEE 802.3 standard, that
provides a data rate of 1 billion bits per second (one gigabit).
Gigabit Ethernet is a variant of Ethernet that operates over
multimode fiber optic cable, single mode fiber optic cable, or
unshielded twisted pair.

The data communications adapters in the example of FIG.
2 includes a JTAG Slave circuit (176) that couples example
compute node (152) for data communications to a JTAG
Master circuit (178). JTAG is the usual name for the IEEE
1149.1 standard entitled Standard Test Access Port and
Boundary-Scan Architecture for test access ports used for
testing printed circuit boards using boundary scan. JTAG is so
widely adapted that, at this time, boundary scan is more or
less synonymous with JTAG. JTAG is used not only for
printed circuit boards, but also for conducting boundary scans
of integrated circuits, and is also used as a mechanism for
debugging embedded systems, providing a convenient “back
door” into the system. The example compute node of FIG. 2
may be all three of these: It typically includes one or more
integrated circuits installed on a printed circuit board and may
be implemented as an embedded system having its own pro-
cessor, its own memory, and its own [/O capability. JTAG
boundary scans through JTAG Slave (176) may efficiently
configure processor registers and memory in compute node
(152) for use in data communications in a PAMI according to
embodiments of the present invention.

The data communications adapters in the example of FIG.
2 includes a Point To Point Adapter (180) that couples
example compute node (152) for data communications to a
data communications network (108) that is optimal for point
to point message passing operations such as, for example, a
network configured as a three-dimensional torus or mesh.
Point To Point Adapter (180) provides data communications
in six directions on three communications axes, X, y, and z,
through six bidirectional links: +x (181), -x (182), +y (183),
-y (184), +7 (185), and -z (186). For ease of explanation, the
Point To Point Adapter (180) of FIG. 2 as illustrated is con-
figured for data communications in three dimensions, X, v,
and z, but readers will recognize that Point To Point Adapters
optimized for point-to-point operations in data communica-
tions in a PAMI of a parallel computer according to embodi-
ments of the present invention may in fact be implemented so
as to support communications in two dimensions, four dimen-
sions, five dimensions, and so on.

The data communications adapters in the example of FIG.
2 includes a Collective Operations Adapter (188) that couples
example compute node (152) for data communications to a
network (106) that is optimal for collective message passing
operations such as, for example, a network configured as a
binary tree. Collective Operations Adapter (188) provides
data communications through three bidirectional links: two to
children nodes (190) and one to a parent node (192).

The example compute node (152) includes a number of
arithmetic logic units (‘ALUs’). ALUs (166) are components
of'processors (164), and a separate ALU (170) is dedicated to
the exclusive use of collective operations adapter (188) for
use in performing the arithmetic and logical functions of
reduction operations. Computer program instructions of a
reduction routine in an application messaging module (215)
or a PAMI (218) may latch an instruction for an arithmetic or

10

15

20

25

30

35

40

45

50

55

60

65

12

logical function into instruction register (169). When the
arithmetic or logical function of a reduction operation is a
‘sum’ or a ‘logical OR,” for example, collective operations
adapter (188) may execute the arithmetic or logical operation
by use of an ALU (166) in a processor (164) or, typically
much faster, by use of the dedicated ALU (170).

The example compute node (152) of FIG. 2 includes a
direct memory access (‘DMA’) controller (225), a module of
automated computing machinery that implements, through
communications with other DMA engines on other compute
nodes, or on a same compute node, direct memory access to
and from memory on its own compute node as well as
memory on other compute nodes. Direct memory access is a
way of reading and writing to and from memory of compute
nodes with reduced operational burden on computer proces-
sors (164); a CPU initiates a DMA transfer, but the CPU does
not execute the DMA transfer. A DMA transfer essentially
copies a block of memory from one compute node to another,
or between RAM segments of applications on the same com-
pute node, from an origin to a target fora PUT operation, from
a target to an origin for a GET operation.

For further explanation, FIG. 3A illustrates an example of
a Point To Point Adapter (180) useful in parallel computers
that implement acquiring remote shared variable directory
(SVD) information according to embodiments of the present
invention. Point To Point Adapter (180) is designed for use in
a data communications network optimized for point to point
operations, a network that organizes compute nodes in a
three-dimensional torus or mesh. Point To Point Adapter
(180) in the example of FIG. 3A provides data communica-
tion along an x-axis through four unidirectional data commu-
nications links, to and from the next node in the —x direction
(182) and to and from the next node in the +x direction (181).
Point To Point Adapter (180) also provides data communica-
tion along a y-axis through four unidirectional data commu-
nications links, to and from the next node in the —y direction
(184) and to and from the next node in the +y direction (183).
Point To Point Adapter (180) in also provides data commu-
nication along a z-axis through four unidirectional data com-
munications links, to and from the next node in the -z direc-
tion (186) and to and from the next node in the +z direction
(185). For ease of explanation, the Point To Point Adapter
(180) of FIG. 3 A as illustrated is configured for data commu-
nications in only three dimensions, X, y, and z, but readers will
recognize that Point To Point Adapters optimized for point-
to-point operations in a parallel computer that implements
acquiring remote shared variable directory (SVD) informa-
tion according to embodiments of the present invention may
in fact be implemented so as to support communications in
two dimensions, four dimensions, five dimensions, and so on.
Several supercomputers now use five dimensional mesh or
torus networks, including, for example, IBM’s Blue Gene
Q™.
For further explanation, FIG. 3B illustrates an example of
a Collective Operations Adapter (188) useful in a parallel
computer that implements acquiring remote shared variable
directory (SVD) information according to embodiments of
the present invention. Collective Operations Adapter (188) is
designed for use in a network optimized for collective opera-
tions, a network that organizes compute nodes of a parallel
computer in a binary tree. Collective Operations Adapter
(188) in the example of FIG. 3B provides data communica-
tion to and from two children nodes through four unidirec-
tional data communications links (190). Collective Opera-
tions Adapter (188) also provides data communication to and
from a parent node through two unidirectional data commu-
nications links (192).

US 9,251,078 B2

13

For further explanation, FIG. 4 sets forth a line drawing
illustrating an example data communications network (108)
optimized for point-to-point operations useful in parallel
computers that implement acquiring remote shared variable
directory (SVD) information according to embodiments of
the present invention. In the example of FIG. 4, dots represent
compute nodes (102) of a parallel computer, and the dotted
lines between the dots represent data communications links
(103) between compute nodes. The data communications
links are implemented with point-to-point data communica-
tions adapters similar to the one illustrated for example in
FIG. 3A, with data communications links on three axis, X, v,
and z, and to and fro in six directions +x (181), —x (182), +y
(183), —y (184), +z (185), and -z (186). The links and com-
pute nodes are organized by this data communications net-
work optimized for point-to-point operations into a three
dimensional mesh (105). The mesh (105) has wrap-around
links on each axis that connect the outermost compute nodes
in the mesh (105) on opposite sides of the mesh (105). These
wrap-around links form a torus (107). Each compute node in
the torus has a location in the torus that is uniquely specified
by a set of x, y, Z coordinates. Readers will note that the
wrap-around links in the y and z directions have been omitted
for clarity, but are configured in a similar manner to the
wrap-around link illustrated in the x direction. For clarity of
explanation, the data communications network of FIG. 4 is
illustrated with only 27 compute nodes, but readers will rec-
ognize that a data communications network optimized for
point-to-point operations in a parallel computer that imple-
ments acquiring remote shared variable directory (SVD)
information according to embodiments of the present inven-
tion may contain only a few compute nodes or may contain
thousands of compute nodes. For ease of explanation, the data
communications network of FIG. 4 is illustrated with only
three dimensions: X, y, and z, but readers will recognize that a
data communications network optimized for point-to-point
operations may in fact be implemented in two dimensions,
four dimensions, five dimensions, and so on. As mentioned,
several supercomputers now use five dimensional mesh or
torus networks, including IBM’s Blue Gene Q™.

For further explanation, FIG. 5 illustrates an example data
communications network (106) optimized for collective
operations by organizing compute nodes in a tree. The
example data communications network of FIG. 5 includes
data communications links connected to the compute nodes
s0 as to organize the compute nodes as a tree. In the example
of FIG. 5, dots represent compute nodes (102) of a parallel
computer, and the dotted lines (103) between the dots repre-
sent data communications links between compute nodes. The
data communications links are implemented with collective
operations data communications adapters similar to the one
illustrated for example in FIG. 3B, with each node typically
providing data communications to and from two children
nodes and data communications to and from a parent node,
with some exceptions. Nodes in a binary tree may be charac-
terized as a root node (202), branch nodes (204), and leaf
nodes (206). The root node (202) has two children but no
parent. The leaf nodes (206) each has a parent, but leaf nodes
have no children. The branch nodes (204) each has both a
parent and two children. The links and compute nodes are
thereby organized by this data communications network opti-
mized for collective operations into a binary tree (106). For
clarity of explanation, the data communications network of
FIG. 5 is illustrated with only 31 compute nodes, but readers
will recognize that a data communications network optimized
for collective operations for use in parallel computers that
implement acquiring remote shared variable directory (SVD)

5

10

15

20

25

30

35

40

45

50

55

60

65

14

information according to embodiments of the present inven-
tion may contain only a few compute nodes or hundreds or
thousands of compute nodes.

In the example of FIG. 5, each node in the tree is assigned
aunit identifier referred to as a ‘rank’ (250). The rank actually
identifies an instance of a parallel application that is executing
on a compute node. That is, the rank is an application-level
identifier. Using the rank to identify a node assumes that only
one such instance of an application is executing on each node.
A compute node can, however, support multiple processors,
each of which can support multiple processing cores—so that
more than one process or instance of an application can easily
be present under execution on any given compute node—or in
all the compute nodes, for that matter. To the extent that more
than one instance of an application executes on a single com-
pute node, the rank identifies the instance of the application as
such rather than the compute node. A rank uniquely identifies
an application’s location in the tree network for use in both
point-to-point and collective operations in the tree network.
The ranks in this example are assigned as integers beginning
with ‘0’ assigned to the root instance or root node (202), ‘1°
assigned to the first node in the second layer of the tree, ‘2’
assigned to the second node in the second layer of the tree, ‘3’
assigned to the first node in the third layer of the tree, ‘4’
assigned to the second node in the third layer of the tree, and
so on. For ease of illustration, only the ranks of the first three
layers of the tree are shown here, but all compute nodes, or
rather all application instances, in the tree network are
assigned a unique rank. Such rank values can also be assigned
as identifiers of application instances as organized in a mesh
or torus network.

For further explanation, FIG. 6 sets forth a block diagram
of'an example protocol stack useful in parallel computers that
implement acquiring remote shared variable directory (SVD)
information according to embodiments of the present inven-
tion. The example protocol stack of FIG. 6 includes a hard-
ware layer (214), a system messaging layer (212), an appli-
cation messaging layer (210), and an application layer (208).
For ease of explanation, the protocol layers in the example
stack of FIG. 6 are shown connecting an origin compute node
(222) and a target compute node (224), although it is worth-
while to point out that in embodiments that effect DMA data
transfers, the origin compute node and the target compute
node can be the same compute node. The granularity of con-
nection through the system messaging layer (212), which is
implemented with a PAMI (218), is finer than merely com-
pute node to compute node—because, again, communica-
tions among endpoints often is communications among end-
points on the same compute node. For further explanation,
recall that the PAMI (218) connects endpoints, connections
specified by combinations of clients, contexts, and tasks, each
such combination being specific to a thread of execution on a
compute node, with each compute node capable of supporting
many threads and therefore many endpoints. Every endpoint
typically can function as both an origin endpoint or a target
endpoint for data transfers through a PAMI, and both the
origin endpoint and its target endpoint can be located on the
same compute node. So an origin compute node (222) and its
target compute node (224) can in fact, and often will, be the
same compute node.

The application layer (208) provides communications
among instances of a parallel application (158) running on the
compute nodes (222, 224) by invoking functions in an appli-
cation messaging module (215) installed on each compute
node. Communications among instances of the application
through messages passed between the instances of the appli-
cation. Applications may communicate messages invoking

US 9,251,078 B2

15

function of an application programming interface (‘APT’)
exposed by the application messaging module (215). In this
approach, the application messaging module (215) exposes a
traditional interface, such as an API of an MPI library, to the
application program (158) so that the application program
can gain the benefits of a PAMI, reduced network traffic,
callback functions, and so on, with no need to recode the
application. Alternatively, if the parallel application is pro-
grammed to use PAMI functions, the application can call the
PAMI functions directly, without going through the applica-
tion messaging module.

The example protocol stack of FIG. 6 includes a system
messaging layer (212) implemented here as a PAMI (218).
The PAMI provides system-level data communications func-
tions that support messaging in the application layer (602)
and the application messaging layer (610). Such system-level
functions are typically invoked through an API exposed to the
application messaging modules (215) in the application mes-
saging layer (210). Although developers can in fact access a
PAMI API directly by coding an application to do so, a
PAMTI’s system-level functions in the system messaging layer
(212) in many embodiments are isolated from the application
layer (208) by the application messaging layer (210), making
the application layer somewhat independent of system spe-
cific details. With an application messaging module present-
ing a standard MPI API to an application, for example, with
the application messaging module retooled to use the PAMI
to carry out the low-level messaging functions, the applica-
tion gains the benefits of a PAMI with no need to incur the
expense of reprogramming the application to call the PAMI
directly. Because, however, some applications will in fact be
reprogrammed to call the PAMI directly, all entities in the
protocol stack above the PAMI are viewed by PAMI as appli-
cations. When PAMI functions are invoked by entities above
the PAMI in the stack, the PAMI makes no distinction
whether the caller is in the application layer or the application
messaging layer, no distinction whether the caller is an appli-
cation as such or an MPI library function invoked by an
application. As far as the PAMI is concerned, any caller of a
PAMI function is an application.

The protocol stack of FIG. 6 includes a hardware layer
(634) that defines the physical implementation and the elec-
trical implementation of aspects of the hardware on the com-
pute nodes such as the bus, network cabling, connector types,
physical data rates, data transmission encoding and many
other factors for communications between the compute nodes
(222) on the physical network medium. In parallel computers
that implement acquiring remote shared variable directory
(SVD) information with DMA controllers according to
embodiments of the present invention, the hardware layer
includes DMA controllers and network links, including rout-
ers, packet switches, and the like.

For further explanation of data communications resources
assigned in collections to PAMI clients, FIG. 7 sets forth a
block diagram of example data communications resources
(220) useful in parallel computers that implement acquiring
remote shared variable directory (SVD) information accord-
ing to embodiments of the present invention. The data com-
munications resources of FIG. 7 include a gigabit Ethernet
adapter (238), an Infiniband adapter (240), a Fibre Channel
adapter (242), a PCI Express adapter (246), a collective
operations network configured as a tree (106), shared
memory (227), DMA controllers (225, 226), and a network
(108) configured as a point-to-point torus or mesh like the
network described above with reference to FIG. 4. A PAMI is
configured with clients, each of which is in turn configured
with certain collections of such data communications

10

15

20

25

30

35

40

45

50

55

60

65

16

resources—so that, for example, the PAMI client (302) in the
PAMI (218) in the example of FIG. 7 can have dedicated to its
use a collection of data communications resources composed
of'six segments (227) of shared memory, six Gigabit Ethernet
adapters (238), and six Infiniband adapters (240). And the
PAMI client (304) can have dedicated to its use six Fibre
Channel adapters (242), a DMA controller (225), a torus
network (108), and five segments (227) of shared memory.
And so on.

The DMA controllers (225, 226) in the example of FIG. 7
each is configured with DMA control logic in the form of a
DMA engine (228, 229), an injection FIFO buffer (230), and
areceive FIFO buffer (232). The DMA engines (228,229) can
be implemented as hardware components, logic networks of
a DMA controller, in firmware, as software operating an
embedded controller, as various combinations of software,
firmware, or hardware, and so on. Each DMA engine (228,
229) operates on behalf of endpoints to send and receive
DMA transfer data through the network (108). The DMA
engines (228, 229) operate the injection buffers (230, 232) by
processing first-in-first-out descriptors (234, 236) in the buff-
ers, hence the designation ‘injection FIFO’ and ‘receive
FIFO.

For further explanation, here is an example use case, a
description of the overall operation of an example PUT DMA
transfer using the DMA controllers (225, 226) and network
(108) in the example of FIG. 7: An originating application
(158), which is typically one instance of a parallel application
running on a compute node, places a quantity of transfer data
(494) at a location in its RAM (155). The application (158)
then calls a post function (480) on a context (512) of an origin
endpoint (352), posting a PUT instruction (390) into a work
queue (282) of the context (512); the PUT instruction (390)
specifies a target endpoint (354) to which the transfer data is
to be sent as well as source and destination memory locations.
The application then calls an advance function (482) on the
context (512). The advance function (482) finds the new PUT
instruction in its work queue (282) and inserts a data descrip-
tor (234) into the injection FIFO of'the origin DMA controller
(225); the data descriptor includes the source and destination
memory locations and the specification of the target endpoint.
The origin DMA engine (225) then transfers the data descrip-
tor (234) as well as the transfer data (494) through the net-
work (108) to the DMA controller (226) on the target side of
the transaction. The target DM A engine (229), upon receiving
the data descriptor and the transfer data, places the transfer
data (494) into the RAM (156) of the target application at the
location specified in the data descriptor and inserts into the
target DMA controller’s receive FIFO (232) a data descriptor
(236) that specifies the target endpoint and the location of the
transfer data (494) in RAM (156). The target application
(159) or application instance calls an advance function (483)
on a context (513) of the target endpoint (354). The advance
function (483) checks the communications resources
assigned to its context (513) for incoming messages, includ-
ing checking the receive FIFO (232) of the target DMA con-
troller (226) for data descriptors that specify the target end-
point (354). The advance function (483) finds the data
descriptor for the PUT transfer and advises the target appli-
cation (159) that its transfer data has arrived. A GET-type
DMA transfer works in a similar manner, with some differ-
ences, including, of course, the fact that transfer data flows in
the opposite direction. Similarly, typical SEND transfers also
operate similarly, some with rendezvous protocols, some
with eager protocols, with data transmitted in packets over the
a network through non-DMA network adapters or through
DMA controllers.

US 9,251,078 B2

17

The example of FIG. 7 includes two DMA controllers (225,
226). DMA transfers between endpoints on separate compute
nodes use two DMA controllers, one on each compute node.
Compute nodes can be implemented with multiple DMA
controllers so that many or even all DMA transfers even
among endpoints on a same compute node can be carried out
using two DMA engines. In some embodiments at least,
however, a compute node, like the example compute node
(152) of FIG. 2, has only one DMA engine, so that that DMA
engine can be use to conduct both sides of transfers between
endpoints on that compute node. For further explanation of
this fact, FIG. 8 sets forth a functional block diagram of an
example DMA controller (225) operatively coupled to a net-
work (108)—in an architecture where this DMA controller
(225) is the only DMA controller on a compute node—and an
origin endpoint (352) and its target endpoint (354) are both
located on the same compute node (152). In the example of
FIG. 8, a single DM A engine (228) operates with two threads
of execution (502, 504) on behalf of endpoints (352, 354) on
a same compute node to send and receive DMA transfer data
through a segment (227) of shared memory. A transmit thread
(502) injects transfer data into the network (108) as specified
in data descriptors (234) in an injection FIFO buffer (230),
and a receive thread (502) receives transfer data from the
network (108) as specified in data descriptors (236) in a
receive FIFO buffer (232).

The overall operation of an example PUT DMA transfer
with the DMA controllers (225) and the network (108) in the
example of FIG. 8 is: An originating application (158), that is
actually one of multiple instances (158, 159) of a parallel
application running on a compute node (152) in separate
threads of execution, places a quantity of transfer data (494)
at a location in its RAM (155). The application (158) then
calls a post function (480) on a context (512) of an origin
endpoint (352), posting a PUT instruction (390) into a work
queue (282) of the context (512); the PUT instruction speci-
fies a target endpoint (354) to which the transfer data is to be
sent as well as source and destination memory locations. The
application (158) then calls an advance function (482) on the
context (512). The advance function (482) finds the new PUT
instruction (390) in its work queue (282) and inserts a data
descriptor (234) into the injection FIFO of the DMA control-
ler (225); the data descriptor includes the source and destina-
tion memory locations and the specification of the target
endpoint. The DMA engine (225) then transfers by its trans-
mit and receive threads (502, 504) through the network (108)
the data descriptor (234) as well as the transfer data (494). The
DMA engine (228), upon receiving by its receive thread (504)
the data descriptor and the transfer data, places the transfer
data (494) into the RAM (156) of the target application and
inserts into the DMA controller’s receive FIFO (232) a data
descriptor (236) that specifies the target endpoint and the
location of the transfer data (494) in RAM (156). The target
application (159) calls an advance function (483) on a context
(513) of the target endpoint (354). The advance function
(483) checks the communications resources assigned to its
context for incoming messages, including checking the
receive FIFO (232) of the DMA controller (225) for data
descriptors that specify the target endpoint (354). The
advance function (483) finds the data descriptor for the PUT
transfer and advises the target application (159) that its trans-
fer data has arrived. Again, a GET-type DMA transfer works
in a similar manner, with some differences, including, of
course, the fact that transfer data flows in the opposite direc-
tion. And typical SEND transfers also operate similarly, some
with rendezvous protocols, some with eager protocols, with

10

15

20

25

30

35

40

45

50

55

60

65

18
data transmitted in packets over the a network through non-
DMA network adapters or through DMA controllers.

By use of an architecture like that illustrated and described
with reference to FIG. 8, a parallel application or an applica-
tion messaging module that is already programmed to use
DMA transfers can gain the benefit of the speed of DMA data
transfers among endpoints on the same compute node with no
need to reprogram the applications or the application mes-
saging modules to use the network in other modes. In this
way, an application or an application messaging module,
already programmed for DMA, can use the same DMA calls
through a same API for DMA regardless whether subject
endpoints are on the same compute node or on separate com-
pute nodes.

FIG. 9 sets forth a functional block diagram of an example
PAMI (218) useful in parallel computers that implement
acquiring remote shared variable directory (SVD) informa-
tion according to embodiments of the present invention in
which the example PAMI operates, on behalf of an applica-
tion (158), with multiple application messaging modules
(502-510) simultaneously. The application (158) can have
multiple messages in transit simultaneously through each of
the application messaging modules (502-510). Each context
(512-520) carries out, through post and advance functions,
data communications for the application on data communi-
cations resources in the exclusive possession, in each client,
of'that context. Each context carries out data communications
operations independently and in parallel with other contexts
in the same or other clients. In the example FIG. 9, each client
(532-540) includes a collection of data communications
resources (522-530) dedicated to the exclusive use of an
application-level data processing entity, one of the applica-
tion messaging modules (502-510):

IBM MPI Library (502) operates through context (512)

data communications resources (522) dedicated to the
use of PAMI client (532),

MPICH Library (504) operates through context (514) data
communications resources (524) dedicated to the use of
PAMI client (534),

Unified Parallel C (“UPC”) Library (506) operates through
context (516) data communications resources (526)
dedicated to the use of PAMI client (536),

Partitioned Global Access Space (‘PGAS’) Runtime
Library (508) operates through context (518) data com-
munications resources (528) dedicated to the use of
PAMI client (538), and

Aggregate Remote Memory Copy Interface ((ARMCI’)
Library (510) operates through context (520) data com-
munications resources (530) dedicated to the use of
PAMI client (540).

Context functions, explained here with regard to references
(472-482) on FIG. 9, include functions to create (472) and
destroy (474) contexts, functions to lock (476) and unlock
(478) access to a context, and functions to post (480) and
advance (480) work in a context. For ease of explanation, the
context functions (472-482) are illustrated in only one
expanded context (512); readers will understand, however,
that all PAMI contexts have similar context functions. The
create (472) and destroy (474) functions are, in an object-
oriented sense, constructors and destructors. In the example
embodiments described in this specifications, post (480) and
advance (482) functions on a context are critical sections, not
thread safe. Applications using such non-reentrant functions
must somehow ensure that critical sections are protected from
re-entrant use.

Posts and advances (480, 482 on FIG. 9) are functions
called on a context, either in a C-type function with a context

US 9,251,078 B2

19

1D as a parameter, or in object oriented practice where the
calling entity possesses a reference to a context or a context
object as such and the posts and advances are member meth-
ods of a context object.

FIG. 10 sets forth a flow chart illustrating an example
method of acquiring remote shared variable directory (SVD)
information of a parallel computer according to embodiments
of'the present invention. An SVD may be a distributed symbol
table that indexes shared objects by handles or keys. In the
SVD, each handle or key has a corresponding local address
within a memory partition of a thread. Threads may be orga-
nized into tasks. Each thread may have a partition of shared
memory and private memory. In the example of FIG. 10, a
first task (1040) includes a first thread (1030) and a plurality
of other threads (1098) and a second task (1041) includes a
second thread (1031) and a plurality of other threads (1099).
Memory (1045) is divided into a shared memory partition
(105) and a private memory partition (1051) for the threads of
the first task (1040).

The method of FIG. 10 includes a runtime optimizer (1000)
determining (1002) that a first thread (1030) of a first task
(1040) requires shared resource data (1080) stored in a
memory partition (1060) corresponding to a second thread
(1031) of asecond task (1041). Determining (1002) that a first
thread (1030) of a first task (1040) requires shared resource
data (1080) may be carried out by identifying a segment of
code for execution on the first thread that utilizes the shared
resource data of the second thread.

The method of FIG. 10 includes requesting (1004) from the
second thread (1031), in response to determining that the first
thread (1030) of the first task (1040) requires the shared
resource data (1080), SVD information (1081) associated
with the shared resource data (1080). Requesting (1004) from
the second thread (1031) the SVD information (1081) asso-
ciated with the shared resource data (1080) may be carried out
by transmitting an active ‘GET’ message to the second thread.
In response to receiving the GET message, the second thread
performs a lookup in its SVD (1071) to retrieve the SVD
information (1081). The second thread may use the SVD
information (1081) to retrieve the address in the memory
partition where the data is stored.

The method of FIG. 10 also includes the runtime optimizer
(1000) receiving (1006) from the second thread (1031), the
SVD information (1081). Receiving (1006) from the second
thread (1031), the SVD information (1081) may be carried
out by receiving an acknowledgement message in response to
the GET message. The acknowledgement message may
include SVD information, such as the address in the shared
memory partition where the resource data is stored.

FIG. 11 sets forth a flow chart illustrating a further example
method of acquiring remote shared variable directory (SVD)
information of a parallel computer according to embodiments
of the present invention. The method of FIG. 11 is similar to
the method of FIG. 10 in that the method of FIG. 11 also
includes: determining (1002) that a first thread (1030) of a
firsttask (1040) requires shared resource data (1080) stored in
a memory partition (1060) corresponding to a second thread
(1031) of a second task (1041); requesting (1004) from the
second thread (1031), in response to determining that the first
thread (1030) of the first task (1040) requires the shared
resource data (1080), the SVD information (1081) associated
with the shared resource data (1080); and receiving (1006)
from the second thread (1031) the SVD information (1081).

The method of FIG. 11 also includes caching (1102) the
SVD information (1081) in an SVD (1070) associated with
the first thread (1030). Caching (1102) the SVD information
(1081) in an SVD (1070) associated with the first thread

10

15

20

25

30

35

40

45

50

55

60

65

20

(1030) may be carried out by identifying a handle within the
SVD information; and storing the SVD information in an
SVD at the entry corresponding to the key.

The method of FIG. 11 also includes using (1104) the
cached SVD information (1153) in the SVD (1070) to access
the shared resource data (1080) in the shared memory parti-
tion (1060) corresponding to the second thread (1031). Using
(1104) the cached SVD information (1153) in the SVD
(1070) to access the shared resource data (1080) in the shared
memory partition (1060) corresponding to the second thread
(1031) may be carried out by retrieving the address from the
SVD; and using the address to access the shared memory
partition of the second thread.

FIG. 12 sets forth a flow chart illustrating a further example
method of acquiring remote shared variable directory (SVD)
information of a parallel computer according to embodiments
of the present invention. The method of FIG. 12 is similar to
the method of FIG. 10 in that the method of FIG. 12 also
includes: determining (1002) that a first thread (1030) of a
firsttask (1040) requires shared resource data (1080) stored in
a memory partition (1060) corresponding to a second thread
(1031) of a second task (1041); requesting (1004) from the
second thread (1031), in response to determining that the first
thread (1030) of the first task (1040) requires the shared
resource data (1080), SVD information (1081) associated
with the shared resource data (1080); and receiving (1006)
from the second thread (1031) the SVD information (1081).

Inthe method of FIG. 12, however, determining (1002) that
a first thread (1030) of a first task (1040) requires shared
resource data (1080) stored in a shared memory partition
(1060) includes tracking (1202) which threads of a particular
job are using a key (1090). Tracking (1202) which threads of
a particular job are using a key (1090) may be carried out by
monitoring initiation and use of a key by threads of a particu-
lar job; and storing the initiation and use in a identifier table.

Inthe method of FIG. 12, however, requesting (1004) from
the second thread (1031) the SVD information (1081) asso-
ciated with the shared resource data (1080) includes trans-
mitting (1204) an active message (1252) using a parallel
active message interface (PAMI) (1254). Transmitting (1204)
an active message (1252) using a parallel active message
interface (PAMI) (1254) may be carried out by transmitting
an active GET message.

In the method of FIG. 12, however, receiving (1006) from
the second thread (1031) the SVD information (1081)
includes determining (1206) that the SVD information has
not been updated by the second thread. Determining (1206)
that the SVD information has not been updated by the second
thread may be carried out by monitoring usage of keys in an
application program.

Example embodiments of the present invention are
described largely in the context of a fully functional parallel
computer that implements acquiring remote shared variable
directory (SVD) information. Readers of skill in the art will
recognize, however, that the present invention also may be
embodied in a computer program product disposed upon
computer readable storage media for use with any suitable
data processing system. Such computer readable storage
media may be any storage medium for machine-readable
information, including magnetic media, optical media, or
other suitable media. Examples of such media include mag-
netic disks in hard drives or diskettes, compact disks for
optical drives, magnetic tape, and others as will occur to those
of'skill in the art. Persons skilled in the art will immediately
recognize that any computer system having suitable program-
ming means will be capable of executing the steps of the
method of the invention as embodied in a computer program

US 9,251,078 B2

21

product. Persons skilled in the art will recognize also that,
although some of the example embodiments described in this
specification are oriented to software installed and executing
on computer hardware, nevertheless, alternative embodi-
ments implemented as firmware or as hardware are well
within the scope of the present invention.

As will be appreciated by those of skill in the art, aspects of
the present invention may be embodied as method, apparatus
or system, or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment or an embodiment combining
software and hardware aspects (firmware, resident software,
micro-code, microcontroller-embedded code, and the like)
that may all generally be referred to herein as a “circuit,”
“module,” “system,” or “apparatus.” Furthermore, aspects of
the present invention may take the form of a computer pro-
gram product embodied in one or more computer readable
media having computer readable program code embodied
thereon.

Any combination of one or more computer readable media
may be utilized. Such a computer readable medium may be a
computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device, or any suitable combination of the fore-
going. More specific examples (a non-exhaustive list) of the
computer readable storage medium would include the follow-
ing: an electrical connection having one or more wires, a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer
readable medium may be transmitted using any appropriate
medium, including but not limited to wireless, wireline, opti-
cal fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network

40

45

22

(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described in this speci-
fication with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowcharts and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of computer apparatus, methods, and com-
puter program products according to various embodiments of
the present invention. In this regard, each block in a flowchart
or block diagram may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustrations, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its true
spirit. The descriptions in this specification are for purposes
of illustration only and are not to be construed in a limiting
sense. The scope of the present invention is limited only by
the language of the following claims.

What is claimed is:

1. A method of acquiring remote shared variable directory
(SVD) information in a parallel computer, the parallel com-
puter comprising a plurality of threads of execution, the

US 9,251,078 B2

23

threads organized into tasks, the parallel computer further
comprising memory partitioned to provide each thread with a
private memory and a shared memory, the method compris-
ing:
determining, by a runtime optimizer of the parallel com-
puter, that a first thread of a first task requires shared
resource data stored in a memory partition of a remote
SVD corresponding to a second thread of a second task;
in response to determining that the first thread of the first
task requires the shared resource data stored in the
memory partition of the remote SVD corresponding to
the second thread, requesting from the second thread, by
the runtime optimizer, SVD information associated with
the shared resource data; and
receiving from the second thread, by the runtime optimizer,
the SVD information associated with the shared
resource data, the SVD information including an
address indicating where the shared resource data is
stored in the memory partition of the remote SVD cor-
responding to the second thread.
2. The method of claim 1 further comprising:
caching, by the runtime optimizer, the SVD information in
an SVD associated with the first thread; and

10

15

20

24

using the cached SVD information in the SVD to access the
shared resource data in the memory partition of the
remote SVD corresponding to the second thread.

3. The method of claim 1 wherein the SVD information
includes a key identifying the shared resource data.

4. The method of claim 3 wherein determining, by a runt-
ime optimizer of the parallel computer, that a first thread of a
first task requires shared resource data stored in a memory
partition corresponding to a second thread of a second task
includes tracking which threads of a particular job are using
the key.

5. The method of claim 1 wherein requesting from the
second thread, by the runtime optimizer, SVD information
associated with the shared resource data includes transmitting
an active message using a parallel active message interface
(PAMI).

6. The method of claim 1 wherein using the cached SVD
information in the SVD to access the resource data in the
shared memory partition corresponding to the second thread
includes determining that the SVD has not been updated by
the second thread.

